KPCA and ELM ensemble modeling of wastewater effluent quality indices
نویسندگان
چکیده
منابع مشابه
KPCA and ELM ensemble modeling of wastewater effluent quality indices
Reliable measurements of effluent quality are important for different operational tasks such as process monitoring, online simulation, and advanced control in the wastewater treatment process (WWTP). A kernel principal component analysis (KPCA) and extreme learning machine (ELM) based ensemble soft sensing model for effluent quality prediction was proposed. KPCA was used to extract nonlinear fe...
متن کاملEvaluation of the microbiological quality of wastewater effluent-irrigated maize
Background and Aim: Water crisis in many regions of the world especially arid and semi-arid areas such as Iran, is an important obstacle for socioeconomic development and food security. Under such circumstances, wastewater reuse in agriculture can be regarded an important alternative water source. However, treated wastewater may contain some types of pathogenic microorganisms which can threaten...
متن کاملstudying effluent quality of wastewater treatment plant
normal 0 false false false en-us x-none fa background: nowadays wastewater is one of the important sources of environmental pollutions and one of the aims of wastewater treatment is to maintain a healthy environment. nonstandard wastewater discharges and their use in agriculture or discharge to surface water will follow environmental and health hazards. the aim of this study was to compare th...
متن کاملeffect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars
این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...
Feature Optimize and Classification of EEG Signals: Application to Lie Detection Using KPCA and ELM
EEG signals had been widely used to detect liars recent years. To overcome the shortcomings of current signals processing, kernel principal component analysis (KPCA) and extreme learning machine (ELM) was combined to detect liars. We recorded the EEG signals at Pz from 30 randomly divided guilty and innocent subjects. Each five Probe responses were averaged within subject and then extracted wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2011
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2011.08.1031